443 research outputs found

    Accuracy of remotely sensed data: Sampling and analysis procedures

    Get PDF
    A review and update of the discrete multivariate analysis techniques used for accuracy assessment is given. A listing of the computer program written to implement these techniques is given. New work on evaluating accuracy assessment using Monte Carlo simulation with different sampling schemes is given. The results of matrices from the mapping effort of the San Juan National Forest is given. A method for estimating the sample size requirements for implementing the accuracy assessment procedures is given. A proposed method for determining the reliability of change detection between two maps of the same area produced at different times is given

    Nationwide forestry applications program. Analysis of forest classification accuracy

    Get PDF
    The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended

    Update and review of accuracy assessment techniques for remotely sensed data

    Get PDF
    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined

    Modelling Associations between Public Understanding, Engagement and Forest Conditions in the Inland Northwest, USA.

    Get PDF
    Abstract Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions

    Modeling associations between public understanding, engagement and forest conditions in theInland Northwest, USA

    Get PDF
    Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions

    Forest management and wildfire risk in inland northwest

    Get PDF
    This brief reports the results of a mail survey of forest landowners in northeastern Oregon conducted in the fall of 2012 by the Communities and Forests in Oregon (CAFOR) Project at the University of Colorado and the University of New Hampshire in cooperation with Oregon State University College of Forestry Extension. The mail survey--a follow-up to a telephone survey conducted for the counties of Baker, Union, and Wallowa in the fall of 2011 -was administered to understand who constituted forest landowners in these three coun¬ties and their perceptions about forest management on both public and private land, as well as risks to forests in the area and the actions they have taken to reduce those risks. The respondents indicated that they perceive wildfire as the greatest threat to their lands, and they consider cooperation with neighbors as very or extremely important for land management. Forest landowners believe public lands are managed poorly and see a greater risk of wildfire occurring on neighboring public land than on their own land. Their opinions on land management are not strongly related to background factors or ideology (for example, gender, age, political party, wealth) but may be heavily influenced by personal experience with wildfire

    Automated cropland mapping of continental Africa using Google Earth Engine cloud computing

    Get PDF
    The automation of agricultural mapping using satellite-derived remotely sensed data remains a challenge in Africa because of the heterogeneous and fragmental landscape, complex crop cycles, and limited access to local knowledge. Currently, consistent, continent-wide routine cropland mapping of Africa does not exist, with most studies focused either on certain portions of the continent or at most a one-time effort at mapping the continent at coarse resolution remote sensing. In this research, we addressed these limitations by applying an automated cropland mapping algorithm (ACMA) that captures extensive knowledge on the croplands of Africa available through: (a) ground-based training samples, (b) very high (sub-meter to five-meter) resolution imagery (VHRI), and (c) local knowledge captured during field visits and/or sourced from country reports and literature. The study used 16-day time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) composited data at 250-m resolution for the entire African continent. Based on these data, the study first produced accurate reference cropland layers or RCLs (cropland extent/areas, irrigation versus rainfed, cropping intensities, crop dominance, and croplands versus cropland fallows) for the year 2014 that provided an overall accuracy of around 90% for crop extent in different agro-ecological zones (AEZs). The RCLs for the year 2014 (RCL2014) were then used in the development of the ACMA algorithm to create ACMA-derived cropland layers for 2014 (ACL2014). ACL2014 when compared pixel-by-pixel with the RCL2014 had an overall similarity greater than 95%. Based on the ACL2014, the African continent had 296 Mha of net cropland areas (260 Mha cultivated plus 36 Mha fallows) and 330 Mha of gross cropland areas. Of the 260 Mha of net cropland areas cultivated during 2014, 90.6% (236 Mha) was rainfed and just 9.4% (24 Mha) was irrigated. Africa has about 15% of the world’s population, but only about 6% of world’s irrigation. Net cropland area distribution was 95 Mha during season 1, 117 Mha during season 2, and 84 Mha continuous. About 58% of the rainfed and 39% of the irrigated were single crops (net cropland area without cropland fallows) cropped during either season 1 (January-May) or season 2 (June-September). The ACMA algorithm was deployed on Google Earth Engine (GEE) cloud computing platform and applied on MODIS time-series data from 2003 through 2014 to obtain ACMA-derived cropland layers for these years (ACL2003 to ACL2014). The results indicated that over these twelve years, on average: (a) croplands increased by 1 Mha/yr, and (b) cropland fallows decreased by 1 Mha/year. Cropland areas computed from ACL2014 for the 55 African countries were largely underestimated when compared with an independent source of census-based cropland data, with a root-mean-square error (RMSE) of 3.5 Mha. ACMA demonstrated the ability to hind-cast (past years), now-cast (present year), and forecast (future years) cropland products using MODIS 250-m time-series data rapidly, but currently, insufficient reference data exist to rigorously report trends from these results

    Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud

    Get PDF
    Cropland extent maps are useful components for assessing food security. Ideally, such products are a useful addition to countrywide agricultural statistics since they are not politically biased and can be used to calculate cropland area for any spatial unit from an individual farm to various administrative unites (e.g., state, county, district) within and across nations, which in turn can be used to estimate agricultural productivity as well as degree of disturbance on food security from natural disasters and political conflict. However, existing cropland extent maps over large areas (e.g., Country, region, continent, world) are derived from coarse resolution imagery (250 m to 1 km pixels) and have many limitations such as missing fragmented and\or small farms with mixed signatures from different crop types and\or farming practices that can be, confused with other land cover. As a result, the coarse resolution maps have limited useflness in areas where fields are small (<1 ha), such as in Southeast Asia. Furthermore, coarse resolution cropland maps have known uncertainties in both geo-precision of cropland location as well as accuracies of the product. To overcome these limitations, this research was conducted using multi-date, multi-year 30-m Landsat time-series data for 3 years chosen from 2013 to 2016 for all Southeast and Northeast Asian Countries (SNACs), which included 7 refined agro-ecological zones (RAEZ) and 12 countries (Indonesia, Thailand, Myanmar, Vietnam, Malaysia, Philippines, Cambodia, Japan, North Korea, Laos, South Korea, and Brunei). The 30-m (1 pixel = 0.09 ha) data from Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper (ETM+) were used in the study. Ten Landsat bands were used in the analysis (blue, green, red, NIR, SWIR1, SWIR2, Thermal, NDVI, NDWI, LSWI) along with additional layers of standard deviation of these 10 bands across 1 year, and global digital elevation model (GDEM)-derived slope and elevation bands. To reduce the impact of clouds, the Landsat imagery was time-composited over four time-periods (Period 1: January- April, Period 2: May-August, and Period 3: September-December) over 3-years. Period 4 was the standard deviation of all 10 bands taken over all images acquired during the 2015 calendar year. These four period composites, totaling 42 band data-cube, were generated for each of the 7 RAEZs. The reference training data (N = 7849) generated for the 7 RAEZ using sub-meter to 5-m very high spatial resolution imagery (VHRI) helped generate the knowledge-base to separate croplands from non-croplands. This knowledge-base was used to code and run a pixel-based random forest (RF) supervised machine learning algorithm on the Google Earth Engine (GEE) cloud computing environment to separate croplands from non-croplands. The resulting cropland extent products were evaluated using an independent reference validation dataset (N = 1750) in each of the 7 RAEZs as well as for the entire SNAC area. For the entire SNAC area, the overall accuracy was 88.1% with a producer’s accuracy of 81.6% (errors of omissions = 18.4%) and user’s accuracy of 76.7% (errors of commissions = 23.3%). For each of the 7 RAEZs overall accuracies varied from 83.2 to 96.4%. Cropland areas calculated for the 12 countries were compared with country areas reported by the United Nations Food and Agriculture Organization and other national cropland statistics resulting in an R2 value of 0.93. The cropland areas of provinces were compared with the province statistics that showed an R2 = 0.95 for South Korea and R2 = 0.94 for Thailand. The cropland products are made available on an interactive viewer at www.croplands.org and for download at National Aeronautics and Space Administration’s (NASA) Land Processes Distributed Active Archive Center (LP DAAC): https://lpdaac.usgs.gov/node/1281
    • …
    corecore